Aim and Scope

Journal of Mechatronics, Electrical Power, and Vehicular Technology (MEV) is an international journal providing authoritative source of scientific information for researchers and engineers in academia, research institutions, government agencies, and industries. The Journal publishes original research papers, review articles and case studies focused on:

Mechatronics: including control system, robotic, CNC Machine, sensor, signal processing, electronics, actuator, and mechanical dynamics.

Electrical Power: including power generation, transmission system, new and renewable energy, turbine and generator design and analysis, grid system, and source assessment.

Vehicular Technology: including electric/hybrid vehicle design and analysis, vehicle on grid, fuel efficiency, and safety analysis.

Selected Applications: including all implementations or implications related to mechatronics, electrical power, or vehicular technology.

MEV’s vision is to become international platform with high scientific contribution for global community. MEV’s mission is presenting important results of work, whether in the form of research, development, application, or design.

Imprint

MEV is published by Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (RCEPM-LIPI) and managed to be issued twice in every volume. The first issue should be in the mid of the year and the second issue is in the end of the year.

ISSN print: 2087-3379
ISSN electronics: 2088-6985

Electronics edition is available at: www.mevjournal.com

MEV allows reuse and remixing of its content, in accordance with a CC license of CC BY-NC-SA.

Indexing & Abstracting

Indexed in EBSCOhost, Google Scholar, Directory of Open Access Journal (DOAJ), Crossref, Indonesian Scientific Journal Database (ISJD), Indonesian Publication Index (IPI), Mendeley, CiteULike, Cite Factor, Academic Journal Database, ResearchBib, Bielefeld Academic Search Engine (BASE), WorldCat, Sherpa Romeo, Index Copernicus, Open Academic Journal Index (OAJI), Open Access Articles, ROAD: the Directory of Open Access Scholarly Resources, Toronto Public Library, Western Theological Seminary, Ghent University Library, and Electronic Journals Library.

Article Management & Plagiarism Check

Every article submitted to MEV Journal shall use reference management software e.g. EndNote® or Mendeley. Accepted article to be published in MEV Journal will be proofed using Grammarly® checker software.

Plagiarism screening will be conducted by MEV Editorial Board using CrossCheck™ powered by iThenticate® and Grammarly® Plagiarism Checker.

Article Processing Charges

Every article submitted to MEV Journal will not have any Article Processing Charges. This includes peer-reviewing, editing, publishing, maintaining and archiving, and allows immediate access to the full text versions of the articles.
Journal of Mechatronics, Electrical Power, and Vehicular Technology

Volume 06, Issue 2, December 2015

EDITOR-IN-CHIEF

Prof. Dr. Estiko Rijanto
Indonesian Institute of Sciences (LIPI), Komp LIPI Jl Sangkuriang, Blg 20, 2nd Fl, Bandung 40135, INDONESIA
estiko.rijanto@lipi.go.id

INTERNATIONAL EDITORIAL BOARD

Prof. Rosli bin Abu Bakar
Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, MALAYSIA
rosli@ump.edu.my

Prof. Tapan Kumar Saha
School of Mechanical and Manufacturing Engineering, The University of New South Wales
AUSTRALIA
j.guivant@unsw.edu.au

Prof. Muhammad Nizam, S.T, M.T, Ph.D.
Department of Mechanical Engineering, Universitas Sebelas Maret Surakarta,
Jl. Ir. Sutami 36 A, Surakarta, 57126, INDONESIA
nizam_kh@ieee.org

Prof. Dr. Tagawa Yasutaka
Tokyo University of Agriculture and Technology
Naka-machi 2 - 24 – 16, Koganei - shi, Tokyo, 184 – 8588, JAPAN
tagawa@cc.tuat.ac.jp

Prof. Dr. Bambang Riyanto
School of Electrical Engineering and Informatics, Bandung Institute of Technology,
Jl. Ganeshha No. 10, Bandung 40135, INDONESIA
briyanto@lskk.ee.itb.ac.id

Prof. Dr. Adi Soeprijanto
Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS)
Campus ITS Keputih, Surabaya 60111, INDONESIA
adisup@ee.its.ac.id

ASSOCIATE EDITOR

Assoc. Prof. John Young

School of Engineering and IT,
The University of New South Wales, AUSTRALIA
j.young@adfa.edu.au

Prof. Taufik
Director of Electric Power Institute, California Polytechnique
San Luis Obispo, CA 93407, UNITED STATES
taufik@calpoly.edu

Dr. Jose Guivant
School of Mechanical and Manufacturing Engineering, The University of New South Wales
AUSTRALIA
j.guivant@unsw.edu.au

Prof. Dr. Tagawa Yasutaka
Tokyo University of Agriculture and Technology
Naka-machi 2 - 24 – 16, Koganei - shi, Tokyo, 184 – 8588, JAPAN
tagawa@cc.tuat.ac.jp

Prof. Dr. Bambang Riyanto
School of Electrical Engineering and Informatics, Bandung Institute of Technology,
Jl. Ganeshha No. 10, Bandung 40135, INDONESIA
briyanto@lskk.ee.itb.ac.id

Prof. Dr. Adi Soeprijanto
Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS)
Campus ITS Keputih, Surabaya 60111, INDONESIA
adisup@ee.its.ac.id

Riza Muhida, Ph.D.
STKIP Surya
Jl. Scientia Boulevard Blok U/7 Summarecon Gading Serpong,
Tangerang, Banten, 15810 INDONESIA
riza.muhida@stkipsurya.ac.id

Dr. Tatakicpta Dirangtara
Mechanical and Aerospace Engineering, Bandung Institute of Technology,
tdirgantara@ftmd.itb.ac.id

Prof. Dr. Ir. R. Danardono Agus Sumarsono, DEA, PE
Department of Mechanical Engineering, University of Indonesia, Depok, Indonesia,
dasumarsono@gmail.com

Dr. Agus Sunjarianto Pamiratan
Department of Mechanical Engineering, University of Indonesia, Depok, Indonesia,
pamiratan@eng.ui.ac.id

Dr. Larissa Lorenz
Bauhaus Luftfahrt e.V.,
Lyoner-Feininger-Str. 28, 80807
Munchen, GERMANY
larissa.lorenz@bauhaus-luftfahrt.net

Dr.Eng. Budi Prawara
Research Centre for Electrical Power and Mechatronics – LIPI
Komp LIPI Bandung, Blg 20, 2nd Fl, Bandung 40135, INDONESIA
budi.prawara@lipi.go.id

ADVISORY EDITOR

Dr. Endra Joelianto
Engineering Physics, InstitutTeknologi Bandung
Jl. Ganeshha No. 10, Bandung 40135 INDONESIA
ejoe@tf.itb.ac.id
FOREWORD FROM EDITOR-IN-CHIEF

In this issue, eight papers are published with the total number of paper pages of 62 pages. The selected papers have passed high level of reviews and revisions based on the standard operating procedure of the journal. The authors come from Indonesia, Malaysia, Philippines, Australia, and USA. Four topics of the papers are related to mechatronics which address obstacle avoidance method for a group of humanoids inspired by social force model, algorithm of 32-bit data transmission among microcontrollers through an 8-bit port, development of a fixed wing unmanned aerial vehicle (UAV) for disaster area monitoring and mapping, and development of a low-cost electronic wheelchair with obstacle avoidance feature. Two topics are related to electrical power concerning study on performance improvement and economical aspect of gas turbine power plant using evaporative cooling system, and design and implementation of controller for boost dc-dc converter using PI-LPF based on small signal model. In the scope of vehicular technology and related topics there are two papers presented those are comparative study between internal ohmic resistance and capacity for battery state of health estimation, and estimating power needed to fuel electric paratransits in Bandung.

Since the first issue, our journal provides discretion in financial term by waiving the article processing charge. We are planning to improve the quality by registering the journal to other international academic citation index. We wish to offer our thanks to the Indonesian Institute of Sciences (LIPI) for their continuing unwaving support. Also, we would like to acknowledge our immense gratitude to our International Editorial Board members, reviewers and authors.

We hope this publication would contribute to the enhancement of science and technology.

Bandung, December 2015

Editor-in-Chief
LIST OF CONTENTS

Obstacle Avoidance Method for a Group of Humanoids Inspired by Social Force Model
 Ali Sadiyoko, Bambang Riyanto Trilaksono, Kusprapta Mutijarsa,
 Widyawardana Adiprawita ... 67-74

Algorithm of 32-bit Data Transmission Among Microcontrollers Through an 8-bit Port
 Midriem Mirdanies, Hendri Maja Saputra, Estiko Rijanto ... 75-82

Development of a Fixed Wing Unmanned Aerial Vehicle (UAV) for Disaster Area Monitoring
 and Mapping
 Gesang Nugroho, Zahari Taha, Tedy Setya Nugraha, Hatyo Hadsanggeni 83-88

Development of a Low-Cost Electronic Wheelchair with Obstacle Avoidance Feature
 Edwin Romeroso Arboleda, Mary Christine Tumambing Alegre, Kathleen Felix Idica 89-96

Study on Performance Improvement and Economical Aspect of Gas Turbine Power Plant Using
 Evaporative Cooling System
 Hilman Syaeful Alam, John Sasso, Imam Djunaedi ... 97-104

Design and Implementation of Controller for Boost DC-DC Converter Using PI-LPF Based on
 Small Signal Model
 Slamet Kasbi, Estiko Rijanto, Rasli Bin Abd Ghani ... 105-112

Comparative Study Between Internal Ohmic Resistance and Capacity for Battery State of Health
 Estimation
 M. Nisvo Ramadan, Bhisma Adj Pramana, Sigit Agung Widayat, Lora Khaula Amifia,
 Adha Cahyadi, Oyas Wahyunggoro ... 113-122

Estimating Power Needed to Fuel Electric Paratransits in Bandung
 Naili Huda, Kim Peter Hassall, Aam Muharam, Kristian Ismail .. 123-128

Further articles can be found at www.mevjournal.com
Obstacle Avoidance Method for a Group of Humanoids Inspired by Social Force Model

This paper presents a new formulation for obstacle and collision behavior on a group of humanoid robots that adopts walking behavior of pedestrian crowd. A pedestrian receives position information from the other pedestrians, calculate his movement and then continuing his objective. This capability is defined as sociodynamic capability of a pedestrian. Pedestrian’s walking behavior in a crowd is an example of a sociodynamics system and known as Social Force Model (SFM). This research is trying to implement the avoidance terms in SFM into robot’s behavior. The aim of the integration of SFM into robot’s behavior is to increase robot’s ability to maintain its safety by avoiding the obstacles and collision with the other robots. The attractive feature of the proposed algorithm is the fact that the behavior of the humanoids will imitate the human’s behavior while avoiding the obstacle. The proposed algorithm combines formation control using Consensus Algorithm (CA) with collision and obstacle avoidance technique using SFM. Simulation and experiment results show the effectiveness of the proposed algorithm.

Keywords: humanoid robots; formation control; obstacle avoidance; social force model; consensus algorithm.

Development of a Fixed Wing Unmanned Aerial Vehicle (UAV) for Disaster Area Monitoring and Mapping

The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS) so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS) so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and
disaster area.
send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including; lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

Keywords: UAV; remote sensing; disaster monitoring; disaster area mapping; photo mosaic.

Edwin Romeroso Arboleda, Mary Christine Tumambing Alegre, Kathleen Felix Idica (Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University Indang, Cavite, Philippines)

Development of a Low-Cost Electronic Wheelchair with Obstacle Avoidance Feature

A low-cost electronic wheelchair was designed and developed which can perform the similar functions and features as a commercially available wheelchair. It also provides obstacle avoidance capability as added value. The electronic wheelchair was realized by modification of a lightweight manual wheelchair. It uses two electric motors each of 320 W 24 V DC, 5-24 VDC 6 A H-bridge drivers, and a 12 V 17 Ah rechargeable lead acid battery. It equipped with switches, joystick, infrared sensors and ultrasonic sensors. A Gizduino AMeGa32 microcontroller is used to read and interpret commands. User’s acceptance evaluation results show that the developed low-cost wheelchair is able to receive and interpret commands provided by the joystick, detect if a person is seated on it, navigate to avoid obstacles as well as to detect edge and stairs. Technical evaluation result shows that on a flat surface it could move at the speed of around 39.9 m/min without load and 32 m/min with 80 kg load. At 10 degrees inclined surface, the maximum weight limit is 30 kg without the speed of 12 m/min. At 20 degrees inclined surface, the maximum weight limit is 10 kg with the speed of 5 m/min. Regarding cost, it is just a fraction of a cost compared to the commercially available model. Therefore, the developed wheelchair offers an option for potential users who cannot afford to buy the commercially available one.

Keywords: electronic wheelchair; obstacle avoidance; edge detection; Gizduino AMeGa32; microcontroller.

Hilman Syaeful Alam, John Sasso, Imam Djumaedi (‘Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences, Bandung, Indonesia; ‘RRT Sigma Engineering, Melville, New York, USA; ‘Research Center for Physics, Indonesian Institute of Sciences, Bandung, Indonesia)

Study on Performance Improvement and Economical Aspect of Gas Turbine Power Plant Using Evaporative Cooling System

The study is intended to improve the performance of gas turbine engines in order to meet both electrical power demand and peak load in the power plant. In this paper, evaporative cooling system had been applied to improve the performance of gas turbine in Pasanggaran power plant in southern Bali Island, Indonesia. Moreover, the economic analysis was conducted to determine the capacity cost, operating cost and payback period due to the investment cost of the system. Based on the evaluation results, the power improvement for the three gas turbine units (GT1, GT2 and GT3) are 2.09%, 1.38%, and 1.28%, respectively. These results were not very significant when compared to the previous studies as well as on the aspects of SPC (Specific Fuel Consumption), heat rate and thermal efficiency. Based on the evaluation of the economic aspects, the reduction of production costs due to the application of evaporative cooling system was not economical, because it could not compensate the investment cost of the system and it resulted a very long payback period. These unsatisfactory results could be caused by the high relative humidity. Therefore, further studies are needed to investigate the other alternative technologies which are more suitable to the climate conditions in Indonesia.

Keywords: performance improvement; economic analysis; evaporative cooling; gas turbine; power plant.

Slamet Kashi*, Estiko Rijanto*, Rashi Bin Abd Ghani* (‘Malaysia-Japan International Inst. of Tech. (MIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur, Malaysia; ‘Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Bandung, Indonesia; ‘Ministry of Energy and Mineral Resources (KESDM), Research and Development Agency (P3TIKETBKE), Jakarta, Indonesia)

Design and Implementation of Controller for Boost DC-DC Converter Using PI-LPF Based on Small Signal Model

Boost DC-DC converters are used in many renewable energy sources including photovoltaic and fuel cell. They are also used in Uninterrupted Power Supply, inverters, electric vehicles and robots. In this paper a boost converter was built and its controller was developed using proportional integral (PI) action for current loop and low pass filter (LPF) for voltage loop. The controller was derived analytically based on small signal model. Experiment results show that the boost controller functions well in regulating the output voltage under a variation of load. During the start up without any load it can elevate input voltage from 119.6 V to output voltage of 241.6 V. The developed controller can regulate the output voltage smoothly under load variation from no load to sudden load of 352 W. When a large sudden load change happens from 0 W to 1,042 W the output voltage experiences small drop before it is recovered to 241.6 V. It can be concluded that the developed control system works well satisfying the design specification.

Keywords: controller; boost DC-DC converter; PI-LPF; small signal.

M. Nisro Ramadon, Bhisma Adj Pramana, Sagit Agung Widayat, Lora Khuala Amifica, Adha Cahyadi, Oyas Wahyunggoro (Department of Electrical Engineering and Information Technology, Gadjah Mada University, Yogyakarta, Indonesia)

Comparative Study Between Internal Ohmic Resistance and Capacity for Battery State of Health Estimation

In order to avoid battery failure, a battery management system (BMS) is necessary. Battery state of charge (SOC) and state of health (SOH) are part of information provided by a BMS. This research analyzes methods to estimate SOH based lithium polymer battery on change of its internal resistance and its capacity. Recursive least square (RLS) algorithm was used to estimate internal ohmic resistance while coulomb counting was used to estimate change in the battery capacity. For the estimation algorithm, the battery terminal voltage and current are set as the input variables. Some tests including static capacity test, pulse test, pulse variation test and before charge-discharge test have been conducted to obtain the required data. After comparing the two methods, the obtained results show that SOH estimation based on coulomb counting provides better accuracy than SOH estimation.
based on internal ohmic resistance. However, the SOH estimation based on internal ohmic resistance is faster and more reliable for real application.

Keywords: battery management system; state of health; lithium polymer; recursive least square; coulomb counting.

Naili Hudaa, Kim Peter Hassallb, Aam Muharama, Kristian Ismaila
(aResearch Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Bandung, Indonesia; bDepartment of Infrastructure Engineering, Melbourne School of Engineering, Melbourne, Australia)

Estimating Power Needed to Fuel Electric Paratransits in Bandung

This is the preliminary finding of a study elaborating the total energy consumption when paratransits in Bandung are altered into electric and the scenario to fulfill it. Therefore, there are lots to be done further concerning result of this initial research, of which will be discussed in another publication. In this paper calculation was done to find out the volume of power needed to fuel electric paratransits in Bandung. Steps carried out include computing total energy consumption for all paratransits, clustering stations from classified routes established by local Department of Transport, and estimating the electricity demand in every clustered station. Data used for this study was acquired from Badan Pusat Statistik Kota Bandung and PT PLN DJA APD Jawa Barat and Banten. A total demand of 61.12 MWh per month will surface to charge the total of 5,521 paratransits from 38 available routes in 15 clustered stations under the assumptions that all paratransits only make 6 return travels per day, operate 30 days per month, and use batteries with 50% State of Charge.

Keywords: transportation; electric paratransit; in town; electricity demand; feasibility study.